민석이는 손글씨 인식 프로그램 개발을 위해 우선 MNIST 데이터셋을 기계학습시키는 과정을 거치려고 한다. 아직은 실력이 부족해 학습의 정확도가 70%에 불과한데, 파이토치를 잘 아는 우리가 그동안 배운 방법으로 민석이를 도와 정확도를 96%까지 올려보도록 하자. (정확도도 첨부해주세요!)
import torch
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import random
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# for reproducibility
random.seed(777)
torch.manual_seed(777)
if device == 'cuda':
torch.cuda.manual_seed_all(777)
# parameters
learning_rate = 0.01
training_epochs = 10
batch_size = 50
# MNIST dataset
mnist_train = dsets.MNIST(root='MNIST_data/',
train=True,
transform=transforms.ToTensor(),
download=True)
mnist_test = dsets.MNIST(root='MNIST_data/',
train=False,
transform=transforms.ToTensor(),
download=True)
# dataset loader
data_loader = torch.utils.data.DataLoader(dataset=mnist_train,
batch_size=batch_size,
shuffle=True,
drop_last=True)
# layer
linear = torch.nn.Linear(784, 10, bias=True).to(device)
# 활성화함수
sigmoid = torch.nn.Sigmoid()
# model
model = torch.nn.Sequential(linear, sigmoid).to(device)
# optimizer
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(linear.parameters(), lr=learning_rate)
total_batch = len(data_loader)
model.eval()
for epoch in range(training_epochs):
avg_cost = 0
for X, Y in data_loader:
# reshape input image into [batch_size by 784]
# label is not one-hot encoded
X = X.view(-1, 28 * 28).to(device)
Y = Y.to(device)
optimizer.zero_grad()
hypothesis = model(X)
cost = criterion(hypothesis, Y)
cost.backward()
optimizer.step()
avg_cost += cost / total_batch
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning finished')
# Test model and check accuracy
with torch.no_grad():
model.train()
# Test the model using test sets
X_test = mnist_test.test_data.view(-1, 28 * 28).float().to(device)
Y_test = mnist_test.test_labels.to(device)
prediction = model(X_test)
correct_prediction = torch.argmax(prediction, 1) == Y_test
accuracy = correct_prediction.float().mean()
print('Accuracy:', accuracy.item())